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ABSTRACT

The problem treated in this paper is that of the

evaluation of pressure waves that can be generated by clouds

of explosive gas-air mixtures in a free atmosphere which is

initially at a uniform state. The particular subject of this study

is concerned with the final stage of the process when, following

ignition and initial flame acceleration, the flame acquires the

steady state of a constant velocity deflagration. Under the

assumption of point, line or plane symmetrical geometry, the

flow field is then self-similar. Theoretical results describing

such flow fields are presented and numerical solutions,obtained

for a representative case corresponding to a hydrocarbon-air

mixture at normal atmospheric conditions, arc given.
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INTRODUCTION

When an explosive gas-air mixture infln unconfined spacc is ignited at

the center, either a flame or a detonation can be, at first, initiated, depending on

the power density of the ignition energy. Under normal circumstances the former-

will then accelerate reaching soon a steady state of propagation, while the latter

will most likely decay - a process accompanied by the gradual separation of the

rieaction zone from the shock front.

Such phenomena have been studied initially with reference to spherical

detonations, by Manson (1) Freiwald and Ude (2) Zeltdovich et al. (3) and Leonas.4)

More recently, tho knowledge in this field of study has been greatly enhanced as a

consequence of the availability of modern experimental techniques, notably the use

of the focused giant-pulse laser beam for ignition, as exemplified by the work of

(5)Lee, and the application of high-frequency response pressure transducers combined

with high resolution optical recording techniques, as illustrated by the studies of

(5)Soloukhin and Oppenhelm (

In both cases of ignition, whether it results in a flame or produces in-

itially a detonation wave, the most likely eventual outcome of combustion in air is

the establishment of a steady propagation state where the flame moves at a constant

speed, acting, in effect, as a deflagration that leaves behind products at rest and

generates ahead a pressure wave which, under proper geometrical conditions, ac-

quires the character of a self-similar blast wave. It is the analysis of this case

that forms the objective of this paper.
Such flow fields were studied by-Taylor (6) Sedov (7) and Shiken"(8),

and discussed in the text of Courant and Friedrichs (. The analysis presented

here follows, in essence, the technique of the above references; the formulation is,

however, modified to take advantage of the simplificaticw" that o•ai be obtained as a

consequence of our recent studies on the fundamental •, of blast waves!1 0 ' 11)

The results are worked out in detail to yield a full descrlr.tion of the pressure wave

that can be formed by a cloud of a hydrocarbon-air mixture, The possible effects of
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goometry are taken into account by the consideration of either point-, line-, or

plane-symmetrical motion. In free space the most probable shape the wave may

take should be encompassed by the point- and line-symmetrical geometry, so that

the physically realizable case should be bounded by these two solutions.
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PROBLEM

The time-space wave diagram of the system is presented in Fig. 1, the

coordinates t and r being measured from the origin where all wav:e fronts inter-

sect. The medium into which the leading wave front propagates, state @, as well

as the products of combustion behind the flame, state 0, are considered to be at

rest. The flow field to be determined is self-similar, so that the trajectories of

both the deflagration and the front discontinuity are straight lines, while the gas-

dynamic parameters remain invariant along-similarity lines X-- r/1r . With refer-

ence to Fig. 1, the continuous self-similar flow field is thus associated with the

change of state from @ to G). An equivalent flow field can be generated by a piston

whose path is also shown on this ditagram. It is, in fact, such a piston-driven wave that
(6)

formed the objective of the first paper of Taylor in the subject of blast waves.

The problem is-to-determine the space profiles of 'the gasdynamic para-

meters, i.e., the pressure, , density, , temperature, T, and particle velocity, U,

that-would be established at any point in space in a combustible mixture giving rise

to a deflagration front propagating into the medium immediately ahead of it at a given

burning speed,A5 . Both the deflagrations associated with a pressure drop, as pre-

scribed by the appropriate Ilugoniot curve, as well as constant pressure deflag:matious

are considered in the analysis.

In a self-similar flow field each particle undergoes the same thermo-

dynamic process.Thisis represented on the pressure-specific volume diagram in

Fig. 2. After compression by the shock front from state 11 to state 02 represented

by a point lying on the Rankine-Hugoniot curve, RH1, the particle undergoes an isen-

tropic compression In the blast wave to state( immediately ahead oZ the deflagration

which, In turn, yields state & specified by P. point lying on the appropriate Hugoniot

curve, H. The latter can be either associated with a pressure drop terminating at

state 0, or it can correspond to a colstant pressure process ending at state Q.
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SOLUTION

The self-similar flow field of a blast wave can be- described most con-

*. cisely in terms of the following reduced parameters:

F~ u and where,, : (1)

0 is the local velocity of sound, while, with reference to Fig. 1, W/Z= dAM

The reduced parameters represent the phase plane coordinates of the

problem, so that its solution is obtained, in essence, by determining the appropriate

integral curve which prescribes /Z:-. , subject to some specific boundary

conditions. The latter are given, cro. one si-.e, by the Rankine-Iiugoniot relations

across -the shook front and, on the other, by the jump conditions across the defla-

gration front, yielding zero particle velocity in the burnt gas region immediately

behind it. The condition of E = 1 corresponds to the state at the piston face since

then, at i= ,z , one obtains XW 2=a. , i.e.q the piston velocityXW , coincides

with the particle velocity, L. In our notation, under such circumstances X Xp

while U= Up.

For a blast wave whose front propagates at a constant velocity, 1 4 = 1.

If the state of the undisturbed medium is uniform, while the substance is a perfect

gas with constant specific heats, the conservation equations for such self-similar

blast waves can be reduced to a single differential equation governing the solution,
(10)namely:

K .~ a/)~'-F)F(2)
where d ~

DZ-

while J 0, 1, 2 for the plane-, line-, and point-symmetrical geometry, respect-

ively, and • is the specific heat ratio.
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Once the integral curve in the phase plane is known, the solution is

completed by the quadrature

d~qF- D+%i2

while the gas dynamic parameters of the flow field are determined from the

algebraic relations

W2,'YP(4)

and, since the flow is isentropic,
I

72 (5)

At F= 1 Eqs. (2) and (3) become simply:

2 (6)

F - (7)

representing then also the governing differential equations for the plane-symmetri-

cal case of 4 0. The solution in this case is thus obtained immediately by inte-

gration, giving

Z=ZpF 2
(8)

and (9)

where Zp =4pj and
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The solution to the problem is given in terms of a family of integral curves

on the phase plane f6r which Z. and _Fare the coordinates. Each curve corresponds

to a fixed value of 4and Xp. They are shown for the case of Y= 1.3, on

Fig. 3, labeled in terms of (E , for spherical, cylindrical and plane flow

fields corresponding, respectively, to J 2, 1 and 0.

The curves were obtained by the numerical integration of Eq. (2) or,

for i = 0, directly from Eq. (8) * starting from the conditions at the piston face,

that is F 1 and Z = Zp = rX, . They were terminated at the shock front whose

phase plane coordinates are g~ven by

F

and (10)

where y. t 4'" -/2 2 Eliminating the latter from Eqs. (10) and (11) one ob-

tains for the locus of end points

representing the equation oU the Rankine-Hugoniot curve in the phase plane. The

corresponding initial condition is that of a quiescent atmosphere ahead of the wave,

that is

and 2= (12)

Z/ A~2 j

while the change of the gasdynamic parameters across the front is specified in terms
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of the following shock relations:

S(13)

717

For weak waves .the Mach number of the front approaches unity and

there arises a basic difficulty in the integration of the differential equation govern-
ing the structure of the blast wave. This is due to the particular property of the

singularity of the point F = O, Z 1 which lies at the intersection of the "ankine-

Hugoniot curve with the F 0 axis ,corresponding to the condition of I4 1 at the

front (10). The prob'em is caused by the fact that the Integral curves representing

the blast wave structure intersect the Rankine-Hugoniot curve at a positive slope

that becomes larger for weaker waves, while they have to approach the singularity

at F = 0 with an infinitely negative slope. The consequent rapid change in the deri-

(G)vatives produces queer numerical results which led Taylor initially to the belief

that there may be a lower bound to the solution corresponding to the condition that X P

cannot be smaller than a certain value, somewhat between 0.4 and 0.5.

Actually, as it has been indeed observed by Taylor (6) when the front

Mach number approaches unity, the problem is governed by the acoustic wave equa-

tion and, as it will be demonstrated here, there exists a continuous transition be-.

tween the acoustic and blast wave domains, so that, in fact, the weak limit does not

exist and X can be r.,'- small as one pleasas.

The acoustic wave Is described in terms of the velocity potential i

which satisfies the equation

)25
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and is related to the particle velocity and pressure, respectively, as follows

dr

Introducing the similarity variable X , and assuming for the

potential the functional foi €(r,&) of=rJ , Eq. (14), is transformed into an

ordinary differential equation

- " f'-- 0 (16)

while Eq. (15) yields

and , -4j " (17

Integrating Eq. (16), subject to the boundary conditions at the piston

face where

U~ ,= z~ (ýP (18)

and at the front where

at L(19)

one obtains
J411 - X 121-6
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and

ZcxŽ J~. [I~ P ~ /~) a'for j=1

[m ,f- (LAJJ - for j=2

The corresponding velocity and pressure profiles can be then express-

ed as

a~x2= XP./ L7p (22)

and - XP'• f/. x 2 ]for j=2

(23)

The above sct of equations provides a complete description of the

acoustic ";wave in terms of a single variable X , the self-similarity coordinate, and the para-

meter A, equivalent to , as it can be verified directly from the defini-

tions of and Zp by noting that, for the acoustic wave, .Y = 1 while Ot,'a
For the plane-symmetrical case (j = 0) the acoustic wave is identical

to the blast wave corresponding to Y = 1, one being just a simple limit of zhe other

without any anomaly.

The flame is considered to act as a deflagration, as depicted on Fig. 2.

From the analysis of the thermodynamic processes represented on this diagram,

taking properly into account the dependence of the heat of reaction on the tempera-

ture immediately ahead of the flame,one obtains the relation

S=X,%,.r, _ F (24)

where M="L is the molecular weight ratio.
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In the course of computations the parameters Z', F,' and Xj* are

evaluated point by point starting from the piston face. The corresponding value of

can be therefore detcrmined from Eq. (24) and the position of the flame front Is

thus established when it attains the appropriate magnitude for a given combustible

mixture.

The two terms in the square brackets represent, respectively, the two

components of the exp~ression

+ ___ ____(25),,.- .2, (141S) vj.

where ( >-,,'di) while

I-c. (26)

For a constant pressure deflagration, 4; and, consequently, the
j

-second term in the brackets vanishes. If, moreover, the influence of heating in the

blast waive Is negligible, Xi Z N and Eq. (24) is reduced to the asymptotic

form

JI-FF. 
(27)

The value of the parameter 5F. at the flame front is, under such circu-nstances, es-

tablished solely on the basis of the value of •P as specified above.

Finally it should be noted that to each point of the integral curve there

corresponds a certain value of the burning speed given by the relation:

5W( (28)
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RESULTS'

For numerical computations,a typical case of a hydrocarbon-air mix-

ture initially at N. T. P. conditions was used. Its thermodynamic properties were

expressed in terms of the following parameters

'• = 7 345 /sec =1 atm

Figure 3 represents integral curves on the phase plane togcther with

the corresponding plot of X=X(P) . Each is labeled with the appropriate value of

the particular ' Y'Zp . Points corresponding to the flame front are indicated

by triangles. As pointed out before, the transition between the blast wave solution

and the acoustic regime is continuous. At " = 102 the two are exactly coincident.

For > 102 the acoustic solutions become quite accurate, while the numerical

computations for the blast wave get to be very lengthy and, hence, suffer from loss

in accuracy.

To give a complete physical description of the flow fields thus evaluated,

the corresponding particle velocity, temperature and pressure profiles for the spher-

ical case of j = 2 are presented in Figs. 4, 5 and 6, respectively.

Figure 7 gives the burning speed, S , evaluated from Eq. (28), as a

function of )F_ determined by the use of Eq. (24) for the spherically symmetric

waves, with < as the parameter. The graph is quite general in that it is applicable

to any value of the heat of reaction that may be ascribed to the combustible mixture.

As on the other diagrams, points corresponding to the given substance for which

= 7 are denoted by triangles. The burning soeed, S , has an upper bound given by

the CJ deflagration limit. It is specified by the condition X3 4z--a 4  and is repre-

sented on the diagram by the chain-dotted line.
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Thc most signiificant physical parameters for all the geometries are

shown in Fig. 8, plotted as a function of •", the parameter identifying specific

solutions. This includes the burning speed, S , and the flame position, X3 , both

referring to a typical hydrocarbon-air mixture that corresponds to 7,

well as the front paramctery = J/M2. The latter ex.hilbits most distinctly the effect

of the geometry on the strength of the wave generated by the flame -- the Mach

number increasing considerably from a point- to a plane-symmetric,'a, case for the

same value of , while the corresponding change in X is quite insignificant.

Finally Fig. 9 displays significant pressure levels as a function of the

burning speed S attained in a combustible medium corresponding to = 7. For

the same burning speeds, the differences between the three geometries are quite

significant, the plateau of for the plane-symmetrical wave being appre-

ciably higher than the pressure levels in the other two cases. In practice one can

expect such high pressures to be attained whenever the flame front is well confined,

as in corridors or tunnels.
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